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A numerical method has been developed to represent unsteady boundary layers with 
large flow reversal. It makes use of the characteristic box scheme which examines 
the finite-difference grid in relation to the magnitude and direction of local velocity 
and reaches and implements a decision to ensure that the Courant, Friedricks & 
Lewey stability criterion is not violated. The method has been applied to the problem 
of an impulsively started circular cylinder and the results, though generally consistent 
with those of van Dommelen & Shen obtained with a Lagrangian method, show some 
differences. The time step is identified as very important and, with the present 
intelligent numerical scheme, the results were readily extended to times far beyond 
those previously achieved with Eulerian methods. Extrapolation of the results 
suggests that the much-discussed singularity for this unsteady flow is the same as 
that of the corresponding steady flow. 

1. Introduction 
Until recent work by van Dommelen & Shen (1981, 1982), controversy existed 

with regard to the possibility that  a singularity occurs at a finite time and position 
in an unsteady boundary layer evolving under a prescribed pressure distribution. The 
consequences of its existence are large, particularly for the inviscid flow. It seems 
possible, however, that previous uncertainties have arisen from inability to 
calculate accurately unsteady flows with large reversal. For their calculations van 
Dommelen & Shen made use of a Lagrangian formulation of the two-dimensional 
unsteady boundary-layer equations and considered a circular cylinder started 
impulsively from rest. They confirmed the existence of a singularity and the accuracy 
of their method. It is to  be expected that the singularity will also exist in an Eulerian 
formulation, but many previous attempts, for example, those of Belcher et al. (1971) 
and Telionis & Tsahalis (1974) have failed to reveal it. Useful reviews of the topic 
have been provided by Riley (1975), Williams (1977), Shen (1978), Telionis (1979) 
and Cebeci (1982). 

With his Eulerian formulation, Cebeci (1979) performed calculations for the same 
problem. The resultsextended to 7 = 2.8, at which time they were terminated because 
the shear layers became too thick to  be accurately represented by the numerical 
scheme. Also, a maximum and a minimum developed in the displacement-thickness 
distribution and tended to cause the solutions to oscillate. Subsequent calculations 
with an improved transformation allowed solutions up to T = 3.0 but the non- 
monotonic variations of the displacement thickness remained (Cebeci 1982). The 
results were in close agreement with those of van Dommelen & Shen (1982) up to 
around r = 2.75. 
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Consideration of the above results led to  a tentative conclusion that the numerical 
scheme was a t  fault and that previous Eulerian formulations may have had similar 
numerical shortcomings. Further calculations were performed to investigate system- 
atically the influence of step lengths in time and x-direction and confirmed that 
the non-monotonic variation of displacement thickness could be reduced by the use 
of smaller step lengths but an  optimum relationship between At and Ax could not 
be determined and appeared essential. These calculations were performed with a form 
of Keller’s box method modified to include the zigzag formulation of Krause, 
Hirschel & Bothmann (1968). I n  common with the often-used Crank-Nicolson 
method (1947), this scheme is convenient, particularly since the orientation of the 
numerical mesh is chosen a priori. This advantage has a corresponding and 
potentially dangerous drawback in the presence of large reverse flows since the mesh 
ratio must be related to  the velocity according to the famous Courant- Friedricks- 
Lewey (CFL) condition (Isaacson & Keller 1966 and Keller 1978) if stability is to  be 
achieved. For a fixed grid chosen a priori, this condition may be violated as the flow 
velocities are determined in ever-increasing computational domains. Thus a natural 
boundary limiting the domain in which stable computations can be made is also 
determined a priori. 

Here we describe a new numerical scheme which is intelligent in the sense that it 
examines the choice of grid in relation to  the magnitude and direction of the local 
velocity and reaches and implements a decision which ensures that the CFL condition 
is satisfied. It is applied to the time-dependent equations of the following section and 
makes use of a form of the characteristic box scheme described in $3. The results for 
an impulsively started circular cylinder are presented and discussed in $4. 

2. Basic equations 
We consider incompressible unsteady laminar flow over a circular cylinder started 

impulsively from rest. The governing boundary-layer equations and their boundary 
conditions for this flow are well known, see for example Cebeci (1979), and are given 
by 

au au au du a2u 
at ax ay dx ay2 
-+u-+?I-- - u e ~ + v - ,  

y = 0, u = 11 = 0;  y+m, u+u,(x). (3) 

To generate the initial conditions for the above equations at t = 0 and to put them 
into a more convenient form for solution, we define the similarity variable 7 and a 
dimensionless stream function f(x, y, 7 )  by 

where @ is the usual definition of stream function which satisfies ( l ) ,  uo denotes a 
reference velocity ~AU,, L is a reference length equal to  x a  with a corresponding to 
the cylinder radius, 7 is a dimensionless time equal to u,t/L, Ue is a dimensionless 
velocity uJu0 and 5 = x/L. In  terms of these relations, with primes denoting 
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differentiation with respect to q,  (1)-(3) can be written as 

v = O , f = f ’ = O ;  7 / = q e , f l = 1 .  (6) 
These variables are employed only in the interval during which the boundary layer 
develops slowly. A t  higher values of time, the exponential-like growth of the 
boundary-layer thickness with time near the rear-stagnation-point region is 
represented in terms of the dimensionless variables Y and F defined by 

and ( 1 )-( 3) become 

Y = O ,  F = F ’ = O ;  Y =  Y e , F ’ = l .  

Here b = e2(T-1) and the primes denote differentiation with respect to Y 
Equations ( 5 )  and (8) can also be expressed in the common form: 

where, with f = F for 7 > 7*,  

The initial conditions at t = 0 can be obtained from (lo), which reduces to 

f’”+&f” = 0 

and whose solution, subject to (6), is given by 

2 f =  7 erf(h)+-& lexp(-h2)-11. 

The initial conditions along the (7, 7)-plane at the forward and rear stagnation points 
can also be obtained from (10). If the external velocity distribution is represented 

(13) Ee = - sin (nz), 
by 

1 
R 

then, at  5 = 0 and I ,  (10) becomes 

w h e r e A = l f o r 5 = O a n d A = - l f o r 5 =  1. 
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3. Numerical method 
The solution of the time-dependent boundary-layer equations with no flow reversal 

in u across the layer is routine and can be achieved easily with the Keller (1974) or 
Crank-Nicolson method (1947). These procedures are described in several references, 
see for example Bradshaw, Cebeci & Whitelaw (1981). When there is flow reversal, 
however, the solution of the time-dependent boundary-layer equations is not 
straightforward and requires special procedures to  avoid the numerical instabilities. 
The zigzag formulation of Krause et al. (1968) helps to remedy the difficulties but 
is not sufficient in all cases, as we shall discuss later. An accurate and physically sound 
numerical method is the characteristic scheme developed for three-dimensional 
steady boundary-layer flows by Cebeci & Stewartson (1978, unpublished work) which 
is based on the solution of governing equations along local streamlines. It examines 
the finite-difference grid in relation t,o the magnitude and direction of local velocity 
and reaches and implements a decision to ensure that the CFL criterion is not 
violated. A brief description of this method for the problem of the impulsively started 
cylinder is given below. 

We first define a new variable 0 as 

and write (10) as 

dii, a f t  af ’ f ” ’ + b l ~ j ’ ” + 8 f ” + b ~ [ 1 - ( f ’ ) 2 ]  dX = b-+bGef‘-. aT a5 

One of the basic ideas of Keller’s box method is to write (1  6) in the form of a first-order 
system. For this purpose we denote f ’  by g, let 

g’ = w (17) 

and write (15) and (16) and their boundary conditions as 

~ = o o , 0 = g = 0 ;  q = q , , g = l .  (20) 

The solution of the system given by (17)-(20) by the standard or characteristic box 
methods depends on how the difference equations are written for (19) ; the remaining 
equations are unchanged. I n  the following paragraphs we first consider (17) and (18) 
and show how the different equations are written. 

Consider the net cube shown in figure 1 and denote the net points by 

where ri = AZi, k ,  = Arn and hi = Ayj. 
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c- '1 4 
FIQURE 1. Net cube for the difference equations. 

The difference approximations that are to represent (1  7 )  are obtained by averaging 
about the midpoint (Zi, r,, q,-;), 

where, for example, 

The difference approximations to (18) are obtained by centring all quantities except 
8 at the centre of the cube (Zt - t ,7n-; ,qf -4)  by taking the values of each variable, 
say q ,  at the four corners of the box, that is, 

(22) h-i d , n -  t , n  i, n 
f (gf 

w;.y = t ( w y + W ; L y ) .  (23) 

Sf-1)  = wj-4 7 

(24a) I-4. n = 1( 2 qj3 i n +a,+ t-1, n ) = $(a;* + q j - 1 9  + q;Ly + q;1:* "). 
qj-4 

However, the centring of 8 is done by writing it as 

In terms of this notation, the finite-difference approximations to (18) can be written 
in the following form : 

where, for example, 6, = 8j-ip n-t, gJ = t ( g j 3 9  +g:-ig n-l 1. (26) 

The unknown variables in (25) correspond to g )  and 6i-41 n-4 so that, when a solution 
of the system given by (17)-(20) is obtained, g is computed at  (i ,n,j)  and 8 at 
(i-4, n-a, j). This modified centring procedure is necessary to avoid oscillations due 
to the use of the continuity equation in the form given by (15) rather than the use 
of the stream function, which allows continuity and momentum equations to be 
expressed as a third-order equation. 

With the standard box scheme, the difference approximations corresponding to (19) 
are formulated in the same way as has been described above. With the characteristic 
box, however, an alternative procedure is followed and is described below. This 
scheme is based on the solution of the governing equations along the local streamlines 
defined by 
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I XI:, x, x, Xt+l 

FIQURE 2. Notation for the characteristic box scheme. 

If we denote distance in this direction by 6 and the angle that it makes with the ?-axis 
by 8, then (19) can be written as 

where A = b( 1 + (Ee g)2)i, ( 2 9 4  

/i’ = tan-lg. (29b) 

The finite-difference approximations to (28) are written along the streamline 
direction (see figure 2). The resulting expressions are lengthy and to illustrate the 
procedure we consider the model equation 

With the notation shown in figure 2, the difference approximations to (30) at point 
P are 

where the relation between Or-, and those values of 0 centred at  ( i - 4 , n - 4 )  and 
(i-%, n-+) are 2 - 2  

(32) 
I - ;  - 61-4 ( - p  2-1 erl = - 

2 x. 2-2 P - X i - f  
- 2i-3) + e,+. 

The boundary conditions follow from (9) and can be written as 

go = 6, = 0;  gJ = 1.  (33) 

The algebraic system given by (22), (25)  and (31) together with the boundary 
conditions given by (33) is nonlinear. Linearization is achieved with Newton’s method 
and the equations are then solved by the block elimination method described, for 
example, in Bradshaw et al. (1981). 
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FIGURE 3. Variation of dimensionless displacement thickness. 

In the calculations described in the next section, the standard box scheme has been 
used for all situations when there is no flow reversal. Where a calculation with the 
standard box reveals a flow reversal (gj  < 0) further iterations at that location make 
use of the characteristic scheme for gj < 0 and the standard box for gj > 0. This 
switch from one scheme to another continues to allow quadratic convergence and 
ensures that, provided the step lengths in the 7-and 5-directions are ‘properly’ 
selected, the numerical instabilities are avoided. Further details are provided in the 
next section. 

4. Results 
It is convenient to present the results which we have obtained using the 

combination of standard and characteristic box schemes and then to discuss them 
in relation to previous calculations. Finally, the numerical requirements of the 
present results are discussed together with the implications of the results for future 
calculations of more realistic unsteady flows. 

Figures 3, 4 and 5 display the variations of dimensionless displacement thickness 
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0.3 k Present results 

FIGURE 4. Variation of dimensionless local skin-friction coefficient. 

A*,  local skin-friction coefficient cf and displacement velocity Gw, that are defined, 
with R, = uo Llv,  by 

It is noteworthy that the displacement thickness is close to monotonic with the small 
maximum and minimum for 7 = 3.1 at which the calculations were terminated. The 
previous results of Cebeci (1982) are also shown in the figure and reveal the maxima 
which stemmed from the use of a numerical scheme which did not meet the 
requirements imposed by the CFL condition. 

The distributions of local skin-friction coefficients of figure 4 show trends which 
are similar to those of the previous results but with differences in magnitude 
consistent with those of figure 3. It should be noted that the results of figures 3 and 
4 are identical with those previously obtained up to the value of 0 at which the 
displacement-thickness gradient reaches its maximum and for values of T less than 
around 2.75. The differences for large values of 0 and T are associated with the 
numerical procedure and, in particular, with its ability to satisfy the CFL condition 
as is discussed later. 

The dimensionless displacement velocity Gw is shown in figure 5 together with the 
locus of points corresponding to  its maxima which increases with time and decreasing 
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- 
7 kn X 

0-t 1 0.05 0+0.54 
1+1.5 0.02 0.54-0.57 

1.5+2.3 0.01 0.57+0.58 
2.3-+2.73 0.005 0.58+0.60 

2.73-+3.024 0.002 0.60-+0.612 
3.024+ 3.1 0.001 0.612+0.64 

0.64-tO.67 
0.67-tO.72 
0.72+ 1.0 

rl 

0.02 
0.01 
0.0025 
0.0020 
0.0015 
0.0020 
0.0025 
0.01 
0.02 

TABLE 1. The distribution of step sizes in r and 5 

angle. At 7 = 3.0, the calculated value of 0 is 111.5 and corresponds very closely to 
that determined by van Dommelen & Shen who terminated their calculations at this 
time. As the peak in the displacement velocity moves upstream with increasing time, 
the location at which the skin-friction coefficient becomes zero also moves upstream 
but at a slower rate and towards its steady-state value of 105" (Cebeci & Smith 1974). 
It may be conjectured that the extrapolation of the peak displacement velocities will 
asymptote to this steady-state value, but positive confirmation will require excessive 
computer resources. 

Corresponding velocity profiles are presented in figure 6 for T = 2.75 and 3.0. The 
general trends are in agreement with those of van Dommelen & Shen and the 
quantitative values agree closely up to 110". The discrepancies at larger angles are 
probably due to the use of inappropriate time steps in the calculations. The previous 
results of Cebeci (1982) tended to agree with the profiles of van Dommelen 6 Shen 
as shown in figure 6 ( a )  and are thought to be inaccurate, as is discussed in the 
following section. 

5. Concluding remarks 
The previous calculations of Cebeci (1982) were terminated because it proved to 

be impossible to select the step lengths required to satisfy the CFL condition in the 
presence of large flow reversal. Other attempts to make use of Eulerian formulations 
to calculate unsteady flows with large backflow have been plagued by the same 
difficulty. The need for a measure which would ensure that the CFL condition was 
satisfied has been met in the present calculations. Here the calculations were 
performed at a given time and with the step lengths in 5 chosen to have the values 
shown in table 1.  As can be seen, the values of A 5  are very much smaller in the vicinity 
of singularity. The solutions were iterated at each E-station until a convergence 
criterion based on the wall shear parameter fk was satisfied, that is 

l(f:)"+l-(f:)vl < 4,  (35) 

where 8, is a tolerance parameter which was set equal to 
The keys to the success of the present approach lie in the characteristic box scheme 

which allows the orientation of the finite-difference mesh to vary across the shear layer 
and the procedure for the automatic selection of time steps so as to maintain the angle 

in the calculations. 
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The value of k, was halved until this condition was met. The resulting values of k, 
are also shown in table 1 and can be seen to  become extremely small a t  7 = 3.0. The 
present calculations, which made use of increments in Z, Y and 7 of 101, 161 and 435 
respectively, could have been extended beyond 7 = 3.1 but a t  considerable expense 
as witnessed by the small and decreasing values of k,. The values of k, and ri shown 
in table 1 were subsequently used in conjunction with the zigzag scheme, which had 
previously failed (Cebeci 1982), to  permit calculations for time greater than 7 > 2.75. 
The results were found to  be identical to  those presented here. The alternative 
approach of using the zigzag scheme and the relationship given by (36) was not, 
however, successful. This confirms that it is necessary to allow the flow direction to 
change across the layer by conditions determined by the local streamlines in the 
selection of time steps to satisfy the CFL condition, which says that the numerical 
domain of dependence must include the analytical domain of dependence. This means 
that the ‘mesh triangle’ used to  advance the solution must contain within i t  the 
backward characteristic from the point a t  which the solution is being computed. In  
the configuration of figure 2, the CFL condition is assured by (36). 

The zigzag scheme does not seem to allow the flexibility to adjust the mesh so 
that the CFL condition is satisfied. However, if the flow and grid are such that the 
CFL condition is always satisfied, then the zigzag scheme gives answers that agree 
very well with the characteristic box scheme. The zigzag scheme using Keller’s 
method remains second-order accurate for flows in which the characteristic slope 
never changes sign with respect to the grid orientation. Thus the computed results 
utilizing this method agree well with the standard box method. However, when the 
characteristic slopes change sign, then the zigzag scheme loses accuracy and is 
predominantly first-order accurate. Thus with flows with strong backflow, the zigzag 
scheme is not t o  be recommended. 

It is clear that  our new procedure has successfully permitted the calculation of the 
flow properties for the unsteady flow associated with a cylinder impulsively started 
from rest. The large reverse-flow regions found with this model problem occur in the 
more practical application of oscillating airfoils : preliminary work has confirmed that 
this is so. I n  particular, the use of the characteristic box scheme together with (36) 
led t o  solutions which approached and passed the region of the singularity without 
numerical difficulty, whereas the zigzag scheme led to solutions which oscillated and 
broke down in the same manner as experienced with the cylinder. 

The above discussion makes i t  clear that  the time steps required to  obtain results 
at the larger values of 7 are very small, as was concluded by Ingham (1984). For this 
reason, the present calculations were terminated at 7 = 3.1, which is already larger 
than that of previous investigators. Figure 5 shows that it is desirable to  perform 
calculations a t  higher values of 7 so as to  confirm the conjecture that the only 
singularity is associated with the steady-state solution. To make a conclusive 
judgement, calculations should be performed up to 7 = 4.1 but, as table 1 suggests, 
the required time steps are likely to be very small. The time required to  obtain results 
in the range 7 = 3.024 to 3.1, which corresponds to 75 time-steps, was 7 hours on 
a CYBER 175. The computer time likely to  be required to reach 7 = 4.1 is clearly 
excessive. 

This research was supported under Air Force Office of Scientific Research contract 
F496720-82-C-0055. 
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